
System Identification through RBF Neural Networks:
Improving Accuracy by a Numerical Approximation

Method for the Centroids and Widths Adjustment

Paulo D. L. de Oliveira1, Arthur P. de S. Braga1, Laurinda L. N. dos Reis1, Fabrício G.
Nogueira1, Antônio B. de S. Júnior1.

1 Federal University of Ceará, Fortaleza, Brazil
pdaving@gmail.com;

{arthurp, laurinda, fnogueira, barbosa}@dee.ufc.br

Abstract. Within the last two decades there has been an increasing need for
the development of mathematical models out of observed data captured from
a system, a process called empirical modelling or systems identification. Un-
der this circumstance, many techniques and methodologies have been pro-
posed, among them the use of Artificial Neural Networks. It is proposed
herein a non-hybrid gradient-based learning algorithm for a Radial Basis
Function Neural Network aimed at improving the accuracy of non-linear dy-
namical system modelling. A single-stage non-hybrid approach is employed
for the learning process, where the free parameters of the network – the cen-
troids positioning, the receptive fields width, and the weights – are updated
through a supervised method. Accurate identification capability is examined
by the use of two non-linear datasets and the performance of the proposed
method is compared with traditional techniques. Results demonstrate that
nonlinear system identification can be significantly improved with easy-to-
implement gradient-based RBF learning strategy.

Keywords: Artificial Neural Networks; System Identification; RBF; Param-
eter Estimation; Gradient Descent; Supervised Learning.

1 Introduction

Systems Identification is a research field that deals with the determination of mathe-
matical models of a system for particular purposes, such as prediction, control, diagno-
sis etc. [1].

Either because of the increasing complexity of the systems or for the availability of
computational power and tools for capturing data, obtaining the mathematical model of
a dynamic system is going beyond the often-complex process of deriving its properties
from physical laws. In light of that, the method known as Black Box System Identifica-
tion [1] becomes very useful when: 1) it is prohibitive to raise the equations regarding
the nature of the process under modelling, and 2) a set of data can be collected from the
system’s behavior when it is under operation. It is noteworthy that few – if none –

mailto:pdaving@gmail.com

previous assumptions about the nature of the system is required when using the black
box modelling strategy. The key information is the collection of input and output data
from which a relation can be inferred through any technique known in the area of sys-
tems identification.

One of the techniques extensively employed for this task is the use of Artificial Neu-
ral Networks (ANNs) [1, 9], especially regarding nonlinear dynamical systems. Among
numerous classes of networks, the Radial Basis Function (RBF) neural networks have
attracted much attention, probably due to its simpler structure, faster learning capability
and easy-to-implement algorithms. The key to its superior performance is intrinsically
related to the parameter adjustments, mainly the centroid positioning, the width of the
adopted basis function and the weights between the hidden and output layers. Typical
methodologies for training such networks often consider a hybrid approach for the pa-
rameter estimation and the learning process, i.e., an unsupervised technique followed
by a supervised one [2-4, 6-8, 10-12, 14-17]. This work, in contrast, proposes a single-
stage learning algorithm that simultaneously updates the RBF parameters through a
supervised gradient-based approach.

In the recent literature, many studies have dealt with multi-stage learning algorithms
[6, 10, 12]; clustering algorithms for centroid relocation [4, 6-8, 10, 12, 13]; and optimal
width adjustment for the basis functions [2, 3, 6, 11, 12, 14, 17]. To briefly describe a
few, a three-stage algorithm, comprising k-means, k-nn and Optimal Steepest Descent
(OSD) methods, is proposed in [12]. Kayhan et al. [10] also propose a three-stage ap-
proach in which the RBF parameters are tuned in a two-stage pre-process and then the
gradient descent algorithm is used for updating network weights. In [6] the authors
modify their previous work [12] for improving the center relocation strategy by using
Particle Swarm Optimization (PSO), followed by a k-nn and OSD algorithms for width
adjustment and weight updating, respectively.

In [17] special attention to optimizing the widths is taken, along with a method for
selecting the appropriate number of basis functions. For determining the centroid posi-
tions, the widths of the basis functions and the weights of the network, a k-means clus-
tering along with an improved Orthogonal Least Squares (OLS) algorithms are exam-
ined in [4]. Kitayama et al. [11] propose a simple width estimate which is based on a
well-known equation given by Haykin [9]. Their proposal introduces an adaptive scal-
ing coefficient for improving Haykin’s fixed estimate. Based on the concepts of Renyi’s
Entropy, the widths of the gaussian functions are continuously adapted in [14]. In [15],
the authors propose a new clustering algorithm that uses the network’s input and output
information for better relocating the centroids and for determining an optimal number
of basis functions. An iterative approach is used for adjusting widths and weights in
[16], while the centers are uniformly distributed in a previous stage of the proposed
algorithm.

In [13] a complete supervised technique is used for continuously updating the
weights and selecting, rather than updating, the center positions. The work herein pre-
sented proposes similar strategy but does not require excessive – and incremental –
memory resources. It instead updates, iteratively, the centroid positions and the recep-
tive fields by a gradient descent algorithm, just like it is traditionally done to the net-
work weights. Additionally, a second variant of the algorithm performs the adjustments

to the centroid positions and network weights, while using conventional technique for
the widths. The performance of such approaches will be examined and validated in
section 4.

The next section will briefly discuss the fundamentals of Radial Basis Function neu-
ral networks, while section 3 details about the proposed algorithms for training such
networks. The outcomes will be presented in section 4, followed by the author’s con-
clusions of the work herein presented.

2 RBF Neural Networks

Beyond the stablished capability for solving pattern classification problems, Radial Ba-
sis Function Neural Networks (RBFNNs) have been widely used for function approxi-
mation purposes, such as in systems identification. RBFNNs are typically structured
with only one hidden layer (see Figure 1), with 𝑚𝑚 neurons, where the activation func-
tions are often defined to be Gaussian, as in Equation 1:

 Φ𝑗𝑗�𝐱𝐱, 𝐜𝐜𝑗𝑗 ,𝜎𝜎𝑗𝑗� = 𝑒𝑒

−�𝐱𝐱−𝐜𝐜𝑗𝑗�
2

𝜎𝜎𝑗𝑗
 2 ; 𝑗𝑗 = 1, … ,𝑚𝑚 (1)

where the vector 𝐜𝐜𝑗𝑗 and the scalar 𝜎𝜎𝑗𝑗 are the parameters of the gaussian function referred
to as the centroid and the width, respectively. The vector 𝐱𝐱, with dimensionality 𝐷𝐷,
represents a sample of the input pattern set that enters the neural network.

At the hidden layer of the RBF neural network, the distance – the Euclidean distance,
for instance – from any sample of the input data to the centroids of the gaussians defines
the degree of activation of any neuron. It is, thereby, reasonably expected that the cen-
ters are located within the input space so that proper activation may take place. This
property is directly related to the accuracy and the ability of the network to learn from
data. Another key characteristic of RBF neural networks is the receptive field (width)

Fig. 1. Typical structure of an RBF Neural Network.

of the basis functions. The effects of changing the widths may lead the network, in
extreme cases, to over-smooth or to over-fit the function to which approximation is
intended. It is, hence, intuitive that proper determination of these parameters will in-
crease the ability and accuracy of an RBFNN to approximate a function.

Training an RBFNN typically involves two stages [5], one for tuning the parameters
of the gaussian functions in the hidden layer; and the other one refers to the adjustment
of the weights of the network to fit the desired output data as close as possible. This is
known as hybrid learning process, in which the first stage is related to an unsupervised
learning – such as clustering algorithms – and the second stage employs a supervised
process, typically Least Squares, to mention one.

Another possibility for training an RBFNN is related to a complete supervised pro-
cess [13], both to optimally adjust the network parameters and to simultaneously update
weights in order to fit the desired data accordingly. This non-hybrid approach is em-
ployed in this work, where the gradient descent method is used for optimal parameter
estimation. Section 3 will explain in detail the learning strategy used for the RBF ar-
chitecture herein presented.

3 Non-hybrid Learning for RBFNNs

Following a complete non-hybrid approach, the authors first developed an algorithm
for centroids, widths and weights adjustments based on the same technique: The Gra-
dient Descent (GD). In such algorithm, partial derivatives of a cost function with re-
spect to all three parameters must be iteratively estimated during the learning process.

In a second approach, only centroids and weights are adjusted following the gradient
descent method. Receptive fields are iteratively updated through Eq. 2:

 𝜎𝜎(𝑖𝑖) = 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖)
√𝑚𝑚

 (2)

where 𝑚𝑚 is the number of neurons in the hidden layer and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) is given by Eq. 3:

 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) = max
1≤𝑗𝑗≤𝑚𝑚

 � max
1≤𝑘𝑘≤𝑚𝑚

 �c𝑗𝑗(𝑖𝑖) − c𝑘𝑘(𝑖𝑖)� � (3)

in which 𝑐𝑐𝑗𝑗(𝑖𝑖) and 𝑐𝑐𝑘𝑘(𝑖𝑖) represent the centroid vectors for every neuron in the hidden
layer at iteration 𝑖𝑖 = 1, … ,𝑁𝑁. It is important to mention that the dimensionality of the
centroids must match the dimensionality 𝐷𝐷 of the input samples, as stated in section 2.

3.1 First Approach: Complete Supervised Learning

This approach will be referred to as AP#1. Let 𝑁𝑁 be the number of input and output
samples available for training the network. Assuming a cost function as:

 𝐸𝐸(𝑖𝑖) = �𝑦𝑦(𝑖𝑖)−𝑦𝑦�(𝑖𝑖)�2

2
; 𝑖𝑖 = 1, … ,𝑁𝑁 (4)

where 𝑦𝑦(𝑖𝑖) and 𝑦𝑦�(𝑖𝑖) are the desired output and the estimated output of the network,
respectively, at iteration 𝑖𝑖 of the algorithm at any epoch. The learning process must
calculate the partial derivatives of (4) with respect to the centroids (𝒄𝒄), the widths (𝜎𝜎)
and the weights (𝜔𝜔), as in the following equations:

𝜕𝜕𝜕𝜕(𝑖𝑖)
𝜕𝜕𝑐𝑐𝑗𝑗,𝑘𝑘(𝑖𝑖)

= −�𝑦𝑦(𝑖𝑖)− 𝑦𝑦�(𝑖𝑖)� 𝜕𝜕𝑦𝑦�(𝑖𝑖)
𝜕𝜕𝑐𝑐𝑗𝑗,𝑘𝑘(𝑖𝑖)

; 𝑖𝑖 = 1, … ,𝑁𝑁; 𝑗𝑗 = 1, … ,𝑚𝑚; 𝑘𝑘 = 1, … ,𝐷𝐷 (5)

 𝜕𝜕𝜕𝜕(𝑖𝑖)
𝜕𝜕𝜎𝜎𝑗𝑗(𝑖𝑖)

= −�𝑦𝑦(𝑖𝑖)− 𝑦𝑦�(𝑖𝑖)� 𝜕𝜕𝑦𝑦�(𝑖𝑖)
𝜕𝜕𝜎𝜎𝑗𝑗(𝑖𝑖)

; 𝑖𝑖 = 1, … ,𝑁𝑁; 𝑗𝑗 = 1, … ,𝑚𝑚; (6)

 𝜕𝜕𝜕𝜕(𝑖𝑖)
𝜕𝜕𝜔𝜔𝑗𝑗(𝑖𝑖)

= −�𝑦𝑦(𝑖𝑖)− 𝑦𝑦�(𝑖𝑖)� 𝜕𝜕𝑦𝑦�(𝑖𝑖)
𝜕𝜕𝜔𝜔𝑗𝑗(𝑖𝑖)

; 𝑖𝑖 = 1, … ,𝑁𝑁; 𝑗𝑗 = 1, … ,𝑚𝑚; (7)

In equations (5) and (6), the partial derivatives of the estimated output with respect
to the centroids and widths can be worked out by numerical approximations. In equation
(7), the partial derivatives are:

 𝜕𝜕𝑦𝑦�(𝑖𝑖)
𝜕𝜕𝜔𝜔𝑗𝑗(𝑖𝑖)

= Φ�𝐱𝐱𝑖𝑖 , 𝒄𝒄𝑗𝑗 ,𝜎𝜎𝑗𝑗�; 𝑖𝑖 = 1, … ,𝑁𝑁; 𝑗𝑗 = 1, … ,𝑚𝑚. (8)

 𝜕𝜕𝑦𝑦�(𝑖𝑖)
𝜕𝜕𝜔𝜔0(𝑖𝑖)

= 1; 𝑖𝑖 = 1, … ,𝑁𝑁; (9)

Hence, the gradient descent updating equations for these parameters should be:

 𝑐𝑐𝑗𝑗,𝑘𝑘(𝑖𝑖 + 1) = 𝑐𝑐𝑗𝑗,𝑘𝑘(𝑖𝑖) + 𝛼𝛼�𝑦𝑦(𝑖𝑖)− 𝑦𝑦�(𝑖𝑖)� 𝜕𝜕𝑦𝑦�(𝑖𝑖)
𝜕𝜕𝑐𝑐𝑗𝑗,𝑘𝑘(𝑖𝑖)

; (10)

𝑖𝑖 = 1, … ,𝑁𝑁; 𝑗𝑗 = 1, … ,𝑚𝑚; 𝑘𝑘 = 1, … ,𝐷𝐷

 𝜎𝜎𝑗𝑗(𝑖𝑖 + 1) = 𝜎𝜎𝑗𝑗(𝑖𝑖) + 𝛼𝛼�𝑦𝑦(𝑖𝑖)− 𝑦𝑦�(𝑖𝑖)� 𝜕𝜕𝑦𝑦�(𝑖𝑖)
𝜕𝜕𝜎𝜎𝑗𝑗(𝑖𝑖)

; (11)

𝑖𝑖 = 1, … ,𝑁𝑁; 𝑗𝑗 = 1, … ,𝑚𝑚;

 𝜔𝜔𝑗𝑗(𝑖𝑖 + 1) = 𝜔𝜔𝑗𝑗(𝑖𝑖) + 𝛼𝛼�𝑦𝑦(𝑖𝑖)− 𝑦𝑦�(𝑖𝑖)� 𝜕𝜕𝑦𝑦�(𝑖𝑖)
𝜕𝜕𝜔𝜔𝑗𝑗(𝑖𝑖)

; (12)

𝑖𝑖 = 1, … ,𝑁𝑁; 𝑗𝑗 = 1, … ,𝑚𝑚;

 𝜔𝜔0(𝑖𝑖 + 1) = 𝜔𝜔0(𝑖𝑖) + 𝛼𝛼�𝑦𝑦(𝑖𝑖)− 𝑦𝑦�(𝑖𝑖)�; (13)

𝑖𝑖 = 1, … ,𝑁𝑁;

From (10) to (13), the parameter 𝛼𝛼 is the learning rate of the network and is directly
related to the speed of convergence of the learning process. The term 𝜔𝜔0 in Eqs. (9) and
(13) refers to the bias of the network – a weight whose input is a constant value, often
set to 1 (see Fig.1).

These steps are performed for every new input sample. After 𝑁𝑁 samples have been
provided (one epoch elapsed) the algorithm runs again until a stop criterion has been
met.

3.2 Second Approach: Supervised Adjustment for Centroids and Weights

In this approach, referred to as AP#2, the rules for deriving the updating equations for
the centroids and weights are the same as for the first approach (AP#1), so there is no
need to restate the equations. The only difference is in the update of the receptive fields,
which are calculated by Eqs. (2) and (3) at each iteration 𝑖𝑖 = 1, … ,𝑁𝑁.

As for the first approach, the algorithm runs repeatedly until a stop criterion has been
met after each epoch.

4 Simulation Results

In this section, both versions (AP#1 and AP#2) of the learning algorithm are tested and
validated using two datasets regarding real data captured from non-linear processes.

The system can be considered as identified when the estimated outputs match the
desired values to a certain extent based on a similarity measure. MATLAB® provides
a useful formula to determine how well one signal matches a reference. This goodness
of fit is calculated as:

 fit = 1 − ‖𝐲𝐲−𝐲𝐲�‖
‖𝐲𝐲−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐲𝐲)‖

 (14)

which indicates that the closer 𝑓𝑓𝑓𝑓𝑓𝑓 is to 1, the more vector 𝐲𝐲� is similar to 𝐲𝐲. Negative
values indicate a poor similarity. This measurement is used throughout this section and
reflects the accuracy of the approximation achieved in different simulations.

4.1 Nonlinear Water Level Tank

The first process refers to a water tank SISO (Single-Input Single-Output) system with
half-conical half-cylindrical shape. In this dynamic system, the input is the water flow,
and the output is the water level inside the tank. A total of 10000 samples is available,
from which 8000 are dedicated for the training stage, while the remaining 2000 are used
for validation. Figure 2 depicts a window of 600 samples of the input data, along with
the target output.

0

0,5

1

3400 3500 3600 3700 3800 3900 4000IN
PU

T
FL

O
W

W
AT

ER
 L

EV
EL

SAMPLE NUMBER

Input Output (Target)

Fig. 2. 600 (out of 10000) Input and Output samples of the nonlinear water tank system. Both
signals are normalized.

The input and output signals are normalized before applied to the RBFNN input
layer. The matrix of regressors is composed by the input signal and delayed outputs fed
back into the network in the form: 𝐱𝐱(𝑖𝑖) = [𝑢𝑢(𝑖𝑖) 𝑦𝑦(𝑖𝑖 − 1)]; 𝑖𝑖 = 1, … ,𝑁𝑁. This repre-
sents an ARX structure in which the current output 𝑦𝑦�(𝑖𝑖) is derived from the past output
𝑦𝑦(𝑖𝑖 − 1) and the current input 𝑢𝑢(𝑖𝑖).

4.2 Nonlinear pH Neutralization Process

The second dataset refers to a MISO (Multiple-Input Single-Output) chemical process
of pH neutralization in a stirring tank, in which the flow of an acid and a base solution
are the inputs of the process, while the output is the pH of the mixed solution. This
process exhibits high non-linear properties and provides a stricter baseline for evaluat-
ing the capability of an RBFNN in identifying nonlinear models.

The input and output signals are also normalized before applied to the RBFNN input
layer. The matrix of regressors is in the form: 𝐱𝐱(𝑖𝑖) = [𝑢𝑢1(𝑖𝑖) 𝑢𝑢2(𝑖𝑖) 𝑦𝑦(𝑖𝑖 − 1)]; 𝑖𝑖 =
1, … ,𝑁𝑁, where 𝑢𝑢1(𝑖𝑖) is the input flow of the acid solution; 𝑢𝑢2(𝑖𝑖) the input flow of the
base solution; and 𝑦𝑦(𝑖𝑖 − 1) is the past output pH of the mixed solution.

A total of 2000 samples is available, from which 1600 (80%) and 400 (20%) samples
are used as the training and validation data, respectively. Figures 3 and 4 present a
window of 50 samples of both inputs and the target output, respectively.

0

0,5

1

1 6 11 16 21 26 31 36 41 46

IN
PU

T
FL

O
W

SAMPLE NUMBER

Acid Base

Fig. 3. First 50 (out of 2000) input samples of the high nonlinear chemical process. Both inputs
are normalized.

0
0,2
0,4
0,6
0,8

1

1 6 11 16 21 26 31 36 41 46

SO
LU

TI
O

N
 p

H

SAMPLE NUMBER

Output pH (Target)

Fig. 4. First 50 samples (out of 2000) of the normalized output of the high nonlinear chemical
process.

4.3 Methodology

It is noticeable that depending on the initialization of the free parameters, the RBFNN
may provide different results. To counteract this randomness, every simulation has been
run 20 times, with different initialization values for the weights, centroids and widths
of the network at each run. The graphics in Figures 5 and 6 are plotted by taking the
mean value of the 20 simulations for every number of hidden units.

For all datasets, which have been split into 80% of training and 20% of validation
data, both versions of the proposed algorithm (AP#1 and AP#2) are compared to a clas-
sical hybrid approach that employs the k-means clustering in the unsupervised stage
plus a gradient-descent method in the supervised one. This first reference algorithm
will be referred to as k-means. Additionally, the use of MATLAB® System Identifica-
tion Toolbox is also presented as a second reference, which will be referred to as
IDENT.

The k-means algorithm intends to optimally relocate the RBF centroids within the
input data space by iteratively updating every centroid position according to their cur-
rent distance, e.g. the Euclidean distance, from the current input sample [5, 9]. This,
however, does not relate the centroids positioning to the approximation error of the
RBFNN whose minimization is intended.

As for the System Identification toolbox, it employs the traditional Least Squares
method [18] whose aim is to minimize the sum of the squares of the residuals in the
estimates. For polynomial model estimates, previous assumption of the system order is
required. For this, the toolbox allows manual or automated specification. The authors
tested both strategies and picked the one that achieved the best results, namely, the
ARX 130 (na=1, nb=3, nk=0) for the water tank system and ARX 140 for the chemical
process. This means that the difference equation for the tank system is:

 𝑦𝑦(𝑡𝑡) = −𝑎𝑎1𝑦𝑦(𝑡𝑡 − 1) + 𝑏𝑏1𝑢𝑢(𝑡𝑡) + 𝑏𝑏2𝑢𝑢(𝑡𝑡 − 1) + 𝑏𝑏3𝑢𝑢(𝑡𝑡 − 2) + 𝑒𝑒(𝑡𝑡) (15)

And the difference equation for the chemical process is:

 𝑦𝑦(𝑡𝑡) = −𝑎𝑎1𝑦𝑦(𝑡𝑡 − 1) + 𝑏𝑏1𝑢𝑢(𝑡𝑡) + 𝑏𝑏2𝑢𝑢(𝑡𝑡 − 1) + 𝑏𝑏3𝑢𝑢(𝑡𝑡 − 2) + b4𝑢𝑢(𝑡𝑡 − 3)
+ 𝑒𝑒(𝑡𝑡) (16)

Fig. 5 brings the results of the identification, in terms of the similarity measure in
Eq.14, of the tank system for a varying number of centroids. It can be seen that the
proposed algorithm (blue/orange lines) outperforms k-means for any number of hidden
units (same as centroids), both for the training and validation data. It also performs
better than IDENT, although it requires more than seven hidden units in general.

Fig. 6 shows the results for the chemical process. It is seen that for few hidden units,
the RBFNN fittings (orange and blue curves) are similar to those obtained by IDENT.
However, it also outperforms this reference method as the number of hidden neurons
grows. It is also noticeable that the proposed algorithm, in general, achieves better fit-
ting when compared to k-means for this high nonlinear system.

Fig. 5. Sim
ulation results for the tank process for both versions of the proposed algorithm

 com
pared to ID

EN
T and k-m

eans. H
orizontal

axis refers to the num
ber of hidden units for A

P#1, A
P#2 and k-m

eans. (Tr) m
eans Training data and (v) m

eans V
alidation data.

Fig. 6. Sim
ulation results for the chem

ical process for both versions of the proposed algorithm
 com

pared to ID
EN

T
and k-m

eans. H
orizontal axis refers to the num

ber of hidden units for A
P#1, A

P#2 and k-m
eans. (Tr) m

eans Training
data and (v) m

eans V
alidation data.

5 Concluding Remarks

Radial Basis Function Neural Networks with one-stage supervised learning process
have shown to provide excellent accuracy on determining models for non-liner systems.
By achieving superior accuracy on the estimates, the authors understand that tuning all
the RBFNN parameters with gradient-based techniques are of great importance for
function approximation tasks that demand high quality models.

The choice for the two datasets regarding real nonlinear systems was made to pro-
vide different perspectives based on the degree of nonlinearity that each system exhib-
its. The dynamics of the tank system can be easily captured with traditional techniques
such as Least Squares and neural networks using k-means. For such system, not sur-
prisingly, the RBFNN learning algorithm proposed in this work performed very well,
although there is a slight trend of loss in the generalization of the network learning, as
the curves for validation data (dashed lines in Fig.5) are decreasing.

To introduce a degree of difficulty in the validation of the RBFNN technique for
system identification purposes, the high nonlinear chemical process has also been in-
cluded which demonstrated the capability of such technique in capturing different lev-
els of nonlinearities with considerable accuracy.

For future works, the authors may treat criteria for stop tuning the free parameters
of the network as well as the ability of the RBFNN to self-organize, i.e., grow and/or
decrease its structure according to some criteria, as in [7, 8]. Those capabilities are
supposed to achieve better generalization for a greater number of nonlinear systems.

Acknowledgments

The authors wish to thank the Brazilian National Council for Scientific and Technolog-
ical Development (CNPq) for its universal call for project 442573/2014-6 through
which the development and publication of this work has been possible. The authors
should also thank the Coordination for the Improvement of Higher Education Personnel
(CAPES) for the financial support; and the Research Group of Automation and Robot-
ics (GPAR/UFC) for the laboratory infrastructure made available.

References

1. L.A. Aguirre. “Introdução à Identificação de Sistemas: Técnicas Lineares e Não-Lineares
aplicadas a sistemas reais”. UFMG Press. (2000).

2. N. Benoudjit, C. Archambeau, A. Lendasse, J. Lee, M. Verleysen, “Width optimization
of the Gaussian kernels in Radial basis function networks,” ESANN’2002, pp. 425–432,
(2002).

3. N. Benoudjit, M. Verleysen, “On the kernel widths in radial-basis function networks,”
Neural Process. Lett., vol. 18, no. 2, pp. 139–154, (2003).

4. S. Billings, H.-L. Wei, M. Balikhin, “Generalized multiscale radial basis function net-
works.,” Neural Netw., vol. 20, no. 10, pp. 1081–1094, (2007).

5. A. P. de S. Braga. “Redes Neurais Artificiais”. Lecture Notes. (2017).

6. V. Fathi, G. A. Montazer, “An improvement in RBF learning algorithm based on PSO
for real time applications,” Neurocomputing, vol. 111, pp. 169–176, (2013).

7. H. Han, Q. L. Chen, J. Qiao, “An efficient self-organizing RBF neural network for water
quality prediction.,” Neural Netw., vol. 24, no. 7, pp. 717–725, (2011).

8. H. Han, W. Zhou, J. Qiao, G. Feng, “A Direct Self-Constructing Neural Controller De-
sign for a Class of Nonlinear Systems,” vol. 26, no. 6, pp. 1312–1322, (2015).

9. S. Haykin. “Neural Networks - A Comprehensive Foundation (2nd ed.)”, Prentice Hall
(1999).

10. G. Kayhan, A. E. Ozdemir, İ. Eminoglu, “Reviewing and designing pre-processing units for
RBF networks: initial structure identification and coarse-tuning of free parameters,” Neural
Comput. Appl., vol. 22, no. 7–8, pp. 1655–1666, (2013).

11. S. Kitayama, K. Yamazaki, “Simple estimate of the width in Gaussian kernel with adap-
tive scaling technique,” Appl. Soft Comput. J., vol. 11, no. 8, pp. 4726–4737, (2011).

12. G. A. Montazer, R. Sabzevari, F. Ghorbani, “Three-phase strategy for the OSD learning
method in RBF neural networks,” Neurocomputing, vol. 72, no. 7–9, pp. 1797–1802, (2009).

13. K. Okamoto, S. Ozawa, S. Abe, “A Fast Incremental Learning Algorithm of RBF Net-
works with Long-Term Memory,” Int. Jt. Conf. Neural Networks, (2003).

14. A. Singh, J. C. Príncipe, “Information theoretic learning with adaptive kernels,” Signal
Processing, vol. 91, no. 2, pp. 203–213, (2011).

15. D. Wang, X.-J. Zeng, J. A. Keane, “A clustering algorithm for radial basis function
neural network initialization,” Neurocomputing, vol. 77, no. 1, pp. 144–155, (2012).

16. P. Xu, A. W. Jayawardena, W. K. Li, “Model selection for RBF network via generalized
degree of freedom,” Neurocomputing, vol. 99, pp. 163–171, (2013).

17. P. Zhou, D. Li, H. Wu, F. Cheng, “The automatic model selection and variable kernel
width for RBF neural networks,” Neurocomputing, vol. 74, no. 17, pp. 3628–3637,
(2011).

18. L. Ljung. “System Identification Toolbox User’s Guide”, Version 5, MathWorks Press,
Natick MA, p.201, (2000).

	1 Introduction
	2 RBF Neural Networks
	3 Non-hybrid Learning for RBFNNs
	3.1 First Approach: Complete Supervised Learning
	3.2 Second Approach: Supervised Adjustment for Centroids and Weights

	4 Simulation Results
	4.1 Nonlinear Water Level Tank
	4.2 Nonlinear pH Neutralization Process
	4.3 Methodology

	5 Concluding Remarks
	Acknowledgments
	References

