Concurrent Quantum Programming in Haskell

Juliana Kaizer Vizzotto and Antônio Carlos da Rocha Costa

Abstract—This paper applies established techniques for concurrent Quantum Programming. The foundation of the approach is an extension to Concurrent Quantum Programming of the technique of “virtual values” proposed by Amr Sabry for quantum programming in Haskell. The basic idea is to encapsulate quantum values within MVars, the monadic variables that support thread synchronization and mutually exclusive accesses to shared references. In this way, quantum processes can be concurrent to have access to quantum values and we will be applying the new established quantum programming paradigm of “control is classical, data is quantum” to the concurrent and distributed quantum programming domain: the case in focus is that the control of concurrency is classical control, while shared data between quantum processes are quantum data. We illustrate the use of the proposed approach by programming sample algorithms for quantum teleportation, quantum leader election, and quantum cryptographic key distribution.

Index Terms—Quantum programming, Concurrent Haskell, Simulation of Quantum Algorithms.

I. INTRODUCTION

There is much effort being put into the development of quantum programming languages, while quantum computers strive to open their way to become practical. Several quantum programming languages have been developed (including [17], [14], [16]), and the notion of computational flow (yet classical - first discussed in [10]) was firmly introduced in the description of quantum algorithms. That notion is associated with the idea of an abstract quantum computer operating with qubits, quantum registers, and a small set of suitable operations on those elements. Basically, the operations consist of state preparation, some unitary transformations and measurement.

On the other hand, several authors have noted the connections between quantum programming and functional programming. In [12], Bird and Mu present the applicability of functional languages for writing quantum codes using a monad of probabilistic computations to deal with the (nondeterministic) results of measurements. J. Karzmarczuk [9] takes advantage of the mathematical foundations of functional languages to model quantum mathematical entities (vector spaces, matrix algebra) in Haskell [7]. Also, Amr Sabry [15] develops an elegant approach to quantum programming in the purely-functional language Haskell. The latter is sufficiently powerful for the (inevitably, exponentially slowed down) simulation of quantum processing and the observation of its results. It uses global side-effects to shared references as a mechanism for observing components of entangled data structure such that the result of an observation affects all entangled values. That scenario is established in the context of a sequential programming environment.

In this paper, building on the work of Sabry, we propose an approach to Concurrent Quantum Programming in Concurrent Haskell [8]. Concurrent Haskell is an extension to Haskell that allows us to express explicitly concurrent computations. Basically, we represent a quantum cell as a global reference with a kind of semaphore to control the access to it, and construct a quantum process as a thread. In this way, the quantum processes will be concurrently (non-deterministically) to have access to quantum values.

We believe that this simple and conventional approach to concurrent programming allows for a natural expression of some quantum algorithms executing in networks with quantum resources, which need some notion of multithreaded programming, since they involve multiple (classical, non-quantum) agents and their communication strategies (sometimes via sharing of quantum resources). Concrete examples of such algorithms are quantum teleportation [1], quantum leader election and distributed consensus [4], and quantum cryptography [2], [3].

The paper is organized as follows. Section II presents Sabry’s approach to quantum programming in Haskell. Section III provides an overview of Concurrent Haskell. Our approach to Concurrent Quantum Programming is presented in Section IV. We show in Section V how the approach can be used to implement a quantum leader election. In Section VI, we implement a simplified version of a quantum key distribution algorithm. Finally, in Section VII we present some conclusions and plans for future works.

II. SABRY’S IDEA OF QUANTUM PROGRAMMING IN HASKELL

Amr Sabry presents in [15] an approach to (sequential) quantum programming using the functional language Haskell. He proposes to present quantum computing in a way closer to a programmer’s usual vocabulary. In particular, he seeks to stimulate quantum programming with other kinds of quantum data types, besides quantum bits. So, in his approach quantum values are represented as a special data type $QV\ a$, such that all nullary constructors of the type a are interpreted as unit vectors from a specific base. A specific base a can be obtained by an instantiation of a from the $Basis$ class. We show this by defining the $qubits$ in the $Binary$ basis through the following declarations:

$$\text{class } (\text{Eq } a, \text{Ord } a) \Rightarrow \text{Basis } a \text{ where basis } :: [a] \text{ data Bin } = {\text{Zero} | \text{One}} \text{ instance Basis Bin where basis } = [\text{Zero}, \text{One}]$$

Given unit vectors for type a, values of the type $QV\ a$
are finite maps of the library \textit{FiniteMap} \footnote{The library \textit{FiniteMap} is in the Haskell core libraries.}, which associates each unit vector of a specific basis with a probability amplitude:

\[
\text{type QV } a = \text{FiniteMap } a \text{ PA} \\
\text{PA} = \text{Complex Double}
\]

having the following constructor:

\[
qV :: \text{Basis } a \Rightarrow [(a, PA)] \rightarrow QV a \\
qV = \text{hstToFM}
\]

and selector:

\[
pr :: \text{Basis } a \Rightarrow QV a \rightarrow a \rightarrow PA \\
pr v k = \text{lookupWithDefaultFM } v \emptyset k
\]

Then, some specific values of \(QV\ Bin\) can be declared as:

\[
qZ, qO, qZO :: QV Bin \\
qZ = qV [(Zero, 1)] \\
qO = qV [(One, 1)] \\
qZO = qV [(Zero, 1 / sqrt 2)], \quad ((One, 1 / sqrt 2)]
\]

Moreover, one can construct pairs of values of type \(QV (a, b)\), which builds on the basis of pairs of quantum values, and allows for the representation of entangled states:

\[
\begin{align*}
\text{instance } (\text{Basis } a, \text{Basis } b) & \Rightarrow \text{Basis } (a, b) \quad \text{where} \\
\text{basis} & = [(a, b) | a \leftarrow \text{basis}, b \leftarrow \text{basis}] \\
qZZ, qOO, qZZOO :: QV (Bin, Bin) \\
qZZ = qV [[(Zero, Zero), 1]] \\
qOO = qV [(One, One), 1)] \\
qZZOO = qV [[(Zero, Zero), 1 / sqrt 2)], \\
& [(One, One), 1 / sqrt 2)]
\end{align*}
\]

The last vector describes an entangled quantum state which cannot be separated into the product of independent quantum states. The vector “\(qZZOO\)” is an EPR-pair, where “EPR” refers to the initials of Einstein, Podolsky, and Rosen who used such a vector in a thought experiment to demonstrate some strange consequences of quantum mechanics \footnote{Virtual values seem to generalize the symbolic registers \cite{13} and the use of rotation operations \cite{16} of the QPL and QCL quantum programming languages, respectively.}.

Unitary transformations are implemented as functions on quantum data types. For instance, the \texttt{hadamard} function on quantum values in the binary basis is defined as follows:

\[
\begin{align*}
\text{hadamard} :: QV Bin \rightarrow QV Bin \\
\text{hadamard } v = \\
\quad \text{let } a = \text{pr } v \text{ Zero} \\
\quad \text{let } b = \text{pr } v \text{ One} \\
\quad \text{in } qV [[(Zero, (a + b) / sqrt 2)], \\
& [(One, (a - b) / sqrt 2)]
\end{align*}
\]

The author also presents a matrix alternative for the representation of quantum operations, which specifies how each input amplitude contributes to each output amplitude. Such matrices are also implemented by finite maps, with the constructor below:

\[
\text{data Qop a b = Qop } (\text{FiniteMap } (a, b) \text{ PA}) \\
\text{qop :: (Basis } a, \text{Basis } b) \Rightarrow [(a, b), \text{ PA}] \rightarrow Qop a b \\
\text{qop } = \text{Qop. listToFM}
\]

Then, to apply an operation to a quantum value we multiply the matrix and the vector representing the value:

\[
qApp :: (\text{Basis } a, \text{Basis } b) \Rightarrow \\
\text{Qop } a b \rightarrow QV a \rightarrow QV b
\]

\[
\text{qApp } (\text{qop } m) v = \\
\quad \text{let } pa b = \text{sum } [\text{pr } m (a, b) * \text{pr } v a | a \leftarrow \text{basis}] \\
\quad \text{in } qV [(b, pa b) | b \leftarrow \text{basis}]
\]

For example, the \texttt{hadamard} operation can be defined using the following matrix:

\[
\text{hadamard } = \text{qop } [(\text{Zero, Zero}), 1 / \text{sqrt } 2), \\
& [(\text{Zero, One}), 1 / \text{sqrt } 2), \\
& [(\text{One, Zero}), 1 / \text{sqrt } 2), \\
& [(\text{One, One}), -1 / \text{sqrt } 2)]
\]

The way to show quantum states to the outside world is to measure them. The outcome of this operation is inherently random and has side effects on the previous (possibly entangled) quantum state. To model such side effects Sabry uses explicit references to shared states. In this way, quantum values can only be accessed via a reference cell and any observation of the value results in the update of the reference cell with the observed value. A quantum reference \(QR a\), which holds a quantum value \(QV a\), is defined on top of Haskell’s \textit{IORef}. An \textit{IORef} is a mutable variable in the \textit{IO} monad \footnote{Virtual values seem to generalize the symbolic registers \cite{13} and the use of rotation operations \cite{16} of the QPL and QCL quantum programming languages, respectively.}:

\[
\begin{align*}
\text{data } QR a & = QR \ (\text{IORef } (QV a)) \\
\text{mkQR :: } QV a & \rightarrow \text{IO } (QR a) \\
\text{mkQR } v & = \text{do } r \leftarrow \text{newVar } \text{IORef } v \\
& \quad \text{return } (QR r)
\end{align*}
\]

The \texttt{IO}-function \texttt{mkQR} allocates a new quantum reference cell and stores a quantum value in it. Therefore, to observe a quantum value accessible via a reference \(QR a\), we get the reference’s content, observe that value, and update the reference with the result of the observation. This is done by the functions:

\[
\begin{align*}
\text{observeR :: } QR a & \rightarrow \text{IO } a \\
\text{observeR } (QR r) & = \\
& \text{do } v \leftarrow \text{read } \text{IORef } r \\
& \quad \text{obs } \leftarrow \text{observeV } v \\
& \quad \text{writeIORef } r \ (qV [(\text{obs}, 1)]) \\
& \quad \text{return } \text{obs}
\end{align*}
\]

\[
\begin{align*}
\text{observe V :: } QV a & \rightarrow \text{IO } a \\
\text{observe V } v & = \\
& \text{do } \text{probs } = \text{map } [(+2) \circ \text{magnitude } \circ (\text{pr } v)] \text{basis} \\
& \quad \text{res } \leftarrow \text{simulateCollapse } \text{probs } \text{basis} \\
& \quad \text{return } \text{res}
\end{align*}
\]

where \texttt{simulateCollapse} is a function that simulates (in an exponentially slowed down way) the reduction of the quantum value due to the observation.

An important feature of quantum programming is that we can operate on parts of a quantum data structure even when that structure is entangled. To allow for such operations on registers of quantum bits, and in general on any other kind of quantum data structure, Sabry proposed the concept of \textit{virtual value}, that is, a part of a data-structure that is virtually separated from the rest of the structure.
the mapping from the entire data structure to the part in question, and back:

```haskell
data Virt a na u = Virt (QR u) (Adaptar (a,na) u)
data Adaptar p ds = Adaptar (dec :: ds → p, cmp :: p → ds)
```

In the type (Virt a na u), u is the type of the entire (possibly entangled) data structure, a is the type of the virtual value itself, and na is the type of the complementary part of u that doesn’t belong to a. Finally to provide a uniform programming model, it is suggested that all operations in a quantum program be defined in terms of virtual values. There is a way of forming virtual values from references to quantum values:

```haskell
virtFromR :: QR a → Virt a () a
virtFromR r =
  Virt r (Adaptar (dec = λa → (a,())),
           cmp = λ(a,()) → a)
```

and there is a function `virtFromV` that makes virtual values from other virtual values:

```haskell
virtFromV :: Virt a na u → Adaptar (a1,a2) a → Virt a1 (a2,na) u
```

```haskell
virtFromV (Virt r) (Adaptar (dec = gdec, cmp = gcmp))) =
  Virt r (Adaptar (dec = λu → let (a,na) = gdec u in
        let (a1,a2) = ldec a in
        cmp = λ(a1,(a2,na)) →
        gcmap (lcmp (a1,a2),na)))
```

There is also a way to create virtual values directly from quantum values:

```haskell
virtFromQ = virtFromR ∘ mkQR
```

The input and output of quantum operations should now be virtual values, i.e., an operation with type Qop a b should map virtual values of type Virt a na u to virtual values of type Virt b nb ub. Thus, the application operator for matrices `app` is defined as:

```haskell
app :: (Basis a, Basis b, Basis n, Basis u, Basis m) ⇒
Qop a b → Virt a na u a → Virt b nb ub → IO ()
```

```haskell
app (Qop m)
(Virt (QR m))
(Adaptar (dec = deca, cmp = cmPa)))
(Virt (QR rb))
(Adaptar (dec = decb, cmp = cmPb))) =
let m' = qop ([(ua,ub),pr m (a,b)]) |
    ua ← basis, ub ← basis,
    let (a,na) = deca ua,
        (b,nb) = decb ub,
    in na ≡ nb |
    in do va ← readIORRef rb
      let vb = (qApp m' va)
      writeIORRef rb vb
```

Note that since virtual values live in memory cells, the application operator works quite as an assignment operator: `vb ← m (va)`.

A virtual value can be observed by the function `observeVV` that first uses the adaptor to select the virtual value from the whole data structure, and then uses the function `observe V`, defined above, to observe the value:

```haskell
observeVV :: Virt a na u → IO a
observeVV (Virt (QR r)) (Adaptar (dec = dec, cmp = cmp))) =
do let pa = sqrt (sum [(**2) ∘ magnitude ∘ pr v)
    (cmp (a,na)) | na ← basis]
    let vrtV = qv [(a,pa a) | a ← basis]
    obs ← observeV vrtV
    let nv = qv [(u,pr v (cmp (obs,na))] |
    a ← basis,
    let (a,na) = dec u,
    a ≡ oobs)
    writeIORRef r nv
    return obs
```

III. Concurrent Haskell

Concurrent Haskell [8] is a concurrent extension to the lazy functional language Haskell that introduces two main new ingredients:

- threads, and a mechanism for thread initiation; and
- atomically-mutable state, to support inter-thread communication and cooperation.

Firstly, the language provides a new primitive called `forkIO`, which starts a thread. The type of `forkIO` is:

```haskell
forkIO :: IO a → IO ThreadId
```

It takes an I/O action and arranges to run it concurrently with the “parent” thread.

For communication between different threads, Concurrent Haskell offers a variety of concepts, all based on mutable variables (MVar). Muttable variables are embedded in the IO monad [6], which guarantees that threads access MVars only in a mutually exclusive way. This is necessary because of the nondeterminism of the underlying interleaving semantics. Different schedules may lead to different interactions taking place and therefore to different results. In this context, threads can create MVars, read values from MVars and write values to MVars. If a thread tries to read from an empty MVar or write to a full MVar, then it is suspended until the MVar is filled or emptied (respectively) by another thread. Using MVars, a type of buffered channels was defined [6]. A channel can be read or written to by multiple threads, it is in a safe way.

A. Communication and MVars

The basic set of operations on MVars is listed below.

```haskell
data MVar a = Abstract
newEmptyMVar :: IO (MVar a)
newMVar :: a → IO (MVar a)
takeMVar :: MVar a → IO a
putMVar :: MVar a → a → IO ()
readMVar :: MVar a → IO a
```

An MVar is (a reference to) a mutable location that either can contain a value of type a, or can be empty. The operation `newEmptyMVar` creates an empty MVar.
The function `putMVar` fills an empty `MVar` with a value, and `takeMVar` takes the contents of an `MVar` out, leaving it empty. If it was empty in the first place, the call to `takeMVar` blocks until another thread fills it by calling `putMVar`. A call to `putMVar` on an `MVar` that is already full blocks the thread until the `MVar` becomes empty. Unlike `takeMVar`, `readMVar` reads the value of an `MVar`, but leaves it full.

B. Channels

A channel with unbounded buffering is defined using the `MVar`s [6]. The `Channel` type has the following interface:

```haskell
type Channel a = MVar (Stream a) -- read end MVar (Stream a)) -- write end

data Stream a = MVar (Item a)

type Item a = IO (Channel a) putChan :: Channel a → a → IO ()

getChan :: Channel a → IO a
```

A channel permits multiple processes to write to it (`putChan`), and read from it (`getChan`), safely. Concretely, the channel is represented by a pair of `MVar`s, that hold the read end and write end of the buffer. The `MVar`s in a `Channel` are required so that channel put and get operations can automatically modify the write and read end of the channels, respectively. The data in the buffer are held in a `Stream`, that is, an `MVar` which is either empty (in which case there is no data in the `Stream`), or holds an `Item`. An `Item` is just a pair of the first element of the `Stream` together with a `Stream` holding the rest of the data.

IV. Concurrent Quantum Programming with Concurrent Haskell

The central idea of our proposal is to encapsulate quantum values within concurrent Haskell’s `MVar`, that is, to extend Sabry’s quantum registers with semaphores to control concurrent access. In this way, a scenario for multi-threaded quantum programming arises where threads are guaranteed to have mutually exclusive accesses to quantum values.

A. Defining Quantum Semaphores and Related Structures

A quantum semaphore `QVar a`, that holds a quantum value `QV a`, is defined as:

```haskell
data QVar a = QMVar (MVar (QV a))
```

Operations to allocate a new `QVar`, and to read and write its quantum value can be given as:

```haskell
mkQVar :: QV a → IO (QVar a)
mkQVar v = do p ← newMVar v
           return (QVar p)

putQVar :: QVar a → QV a → IO ()
putQVar (QVar p) v = putMVar p v

takeQVar :: QVar a → IO (QV a)
takeQVar (QVar p) = do v ← takeMVar p
                      return v
```

Because of the mechanism of `MVar`s, the operation `PutQVar` on a full `QVar` blocks until other thread fills that `QVar` with a quantum value. In the same way `takeQVar` blocks if the `QVar` is empty.

Note that `QVar`s provide the necessary mechanism for mutual exclusion during the observation of quantum values, for when a value inside an `QVar` is being observed by a thread, all other threads should be blocked until the former updates the value with the observed value:

```haskell
observeQVar :: Basis → QVar a → IO a
observeQVar (QVar r) =
  do v ← takeQVar r
     res ← observeV v
  putQVar r (gv [res, 1])
  return res
```

We saw in the section II that Sabry’s proposal is that all computation with quantum values be performed with virtual values built upon reference cells. Therefore, we upgrade the reference cell with `MVar`s to allow mutual exclusion.

```haskell
data Virt a na u =
  Virt (QVar u) (Adaptor (a, na) u)

virtFromQVar :: QVar a → Virt a ()

virtFromQVar r =
  Virt r (Adaptor (dec = λa → (a, ()),
               cmp = λ(a, ()) → a))
```

Analogously, we redefine `observeVV` to work with quantum semaphores.

V. Programming Quantum Leader Election

In the course of a distributed computation, it is often useful to be able to designate one and only one process as the coordinator of some activity. This selection of a coordinator is known as the “leader election problem”. In anonymous networks, where there is no unique naming scheme for processes, purely deterministic classical leader election is impossible. If each process has a coin then they can elect a leader by tossing the coin. If they get a head they are the leader. This is not guaranteed to work: there may be more than one leader or no leaders. In this section we implement the leader election (fair and terminating) quantum algorithm for anonymous network proposed in [4]. The protocol is very simple. Essentially, in such an algorithm the processors share a special quantum entangled state called `W-state`.

```
W_n = \sum_{j=1}^{n} |2^j|.
```

For instance:

```haskell
w_4 =
  normalize (qv [[(Zero, Zero, Zero, One), 1],
              ([Zero, One, Zero, Zero], 1),
              ([Zero, One, Zero, Zero], 1),
              ([One, Zero, Zero, Zero], 1)]
```

3 Here using the “bracket” Dirac notation.
The idea is that each process p_i initially owns the i qubit from W. Then each process carries out the following protocol:

$$p_i \ gmu = \text{do} \ \text{putStrLn} \("p_i")$$

```haskell
result <- newEmptyMVar
let qi = virtFromQMV ari gmu
let vqi = virtFromV qid ad quadi
meas <- observeVV vqi
if meas \equiv One
then do putMVar result "leader"
else do putMVar result "follower"
res <- takeMVar result
print (res)
```

if it observes One then it is the leader otherwise is in the follower state.

We simulate a leader election in a network with four process using a parent thread which sparks the four process defined as above.

```haskell
leader_election =
do gmu <- mkQMV w4
a1 <- myForkIO (p1, gmu)
a2 <- myForkIO (p2, gmu)
a3 <- myForkIO (p3, gmu)
a4 <- myForkIO (p4, gmu)
mapM_ (\lambda vvar \rightarrow readMVar mvar) [a1, o2, o3, o4]
```

An example of output would be:

```haskell
* ConcQComp > leader_election
P1
"follower"
P2
"follower"
P3
"leader"
P4
"follower"
"The end!"
* ConcQComp >
```

VI. Programming a Quantum Key Distribution Algorithm

In 1984 Bennett and Brassard described the first quantum key distribution (QKD) protocol from which private key bits can be created between two parties over a public channel. The basic idea behind QKD is the following fundamental observation [11]: an eavesdropper cannot gain any information from observing a quantum channel, where quantum states are transmitted from the sender to the receiver, without disturbing the states of such values because of the effects that observations have on quantum states.

A. Defining Quantum Channels

A quantum channel is a Haskell channel that holds quantum values, together with operations to write to it, and read from it.

```haskell
data QChan a = QChan (Chan (QV a))
mkQChan :: IO (QChan a)
```

```haskell
mkQChan = do r <- newChan
return (QChan r)
```

```haskell
writeQChan :: QChan a \rightarrow QV a \rightarrow IO ()
writeQChan (QChan chan) qv = writeChan chan qv
```

```haskell
readQChan :: QChan a \rightarrow IO (QV a)
readQChan (QChan chan) = do v <- readChan chan
return v
```

B. Implementing the BB84 QKD Protocol

The algorithm we implement in this section is the BB84 protocol. The protocol is as follows: Alice begins with a (k, b) pair of random classical bits. She encodes each data bit of a as \{0, 1\} (called X base) if the corresponding bit of b is 0 or \{+, -\} (called Z base) if b is 1. Alice sends the resulting quantum states to Bob and tells when she finishes. Bob receives the 4n quantum values, announces this fact, and measures each of them in X or Z bases at random. Alice announces b. Alice and Bob discard any bits where Bob measured a different basis than Alice prepared. With high probability, there are at least 2n bits left (if not, abort the protocol). Alice selects a subset of n bits that will serve as check bits on Eve’s interference, and tells Bob which bits she selected. Alice and Bob announce and compare the values of the n check bits. If some bit disagree they abort the protocol.

In this context, there is a classical channel $chan$ which is used for classical communication between Alice and Bob. This channel may hold single strings for the acknowledgments, and lists of classical bits for the announcement of the basis:

```haskell
data Protocol = Single String | Multiple [Bit]
```

The parent thread creates a quantum channel $QChan$, and a classical channel $Chan$, and forks the two child threads $alice$ and bob. We also use here the function $outForkIO$ that generates an output, allowing the parent thread to force the program to wait for child threads to finish:

```haskell
qkeyd = do putStrLn \("Beginning BB84")
qchan <- mkQChan
chan <- newChan
o1 <- outForkIO (alice qchan chan)
o2 <- outForkIO (bob qchan chan)
map (\lambda vvar \rightarrow readMVar mvar) [o1, o2]
-- wait for the children
putStrLN \("The End")
```

Alice generates the two random bit lists (bits and bases - a and b above, respectively) using the function $randomBitList$.

The argument of this function is the number of key bits. Then, the function $qList$ builds the list of (key) quantum values according to the basis list (basis). Next, Alice puts the list of quantum values in the $QChan$ and informs this fact to Bob with an "ASend qr".

\footnote{The phases of information reconciliation and privacy amplification on the remaining bits are left away from this paper.}

\footnote{Because of lack of space we don’t show here the coding of some auxiliary functions.}
The function `wishGet` has a channel and a value as arguments. It observes the channel until getting the desired value. After observing "Ack_Bob" in the classical channel, Alice writes her basis in this channel. Finally, Alice receives Bob's basis and checks with her basis to confirm the generation of the secret key.

```haskell
alice gchan chan =
do putStrLn ("Alice started")
  basis <- randomBitList 36
  bits <- randomBitList 36
  x <- qubit bits basis
  putQVC chan gchan x
writeChan chan (Single "ASend_0k")
writeGet chan (Single "Ack_Bob")
writeChan chan (Single "ASend_0k")
writeChan chan (Multiple basis)
writeGet chan (Single "Ack_Bob")
Multiple basis <- readChan chan
result <- compBasis basis basis bits
putStrLn ("Alice's key:")
print (result)
putStrLn ("Alice Finished")
```

Bob gchan chan =
do putStrLn ("Bob started")
 qul <- getQVC chan gchan
writeChan chan (Single "Ack_Bob")
basis <- randomBitList 36
 obs <- bitList qul basis
writeGet chan (Single "ASend_0k")
writeChan chan (Single "Ack_Bob")
writeChan chan (Multiple basis)
result <- compBasis basis basis obs
putStrLn ("Bob's Key:")
print (result)
putStrLn ("Bob finished")
```

After reading an "ASend_0k" from the classical channel, Bob gets all quantum values from the quantum channel by the operation `getQVC chan`, that gets quantum values from the channel until it is empty. Then he announces this fact to Alice by putting the message "Ack_Bob" in the `Chan`. Next, Bob creates his random base list and observes the quantum values according to the basis. Then, after reading the message "ASend_0k" and Alice's basis, he writes his basis in the `Chan`. Finally, Bob also defines the secret key comparing his basis with Alice's basis. A running without an eavesdropper would always give Bob and Alice finishing with the same key.

VII. CONCLUSIONS AND FUTURE WORK

We presented an approach to Concurrent Quantum Programming in Concurrent Haskell building on Amr Sabry's proposal of storing quantum values as global references for modelling side effects of measurements, and casting quantum data structures as virtual values for supporting the separate handling of their parts. The basic idea is to embed quantum values in `MVars`, to guarantee mutually exclusive accesses to them by concurrently running quantum threads. The approach was demonstrated by the implementation of three sample quantum algorithms, namely, quantum teleportation, quantum leader election and quantum key distribution. Basing the work on the slogan "control is classic, data is quantum" we were able to use simple and conventional concurrent programming constructs to support Concurrent Quantum Programming. The full range of applicability of the approach still remains to be determined. In particular, the problem of distribution and parallelization of conventionally sequential quantum algorithms, and the determination of the advantages of doing that, seems to be interesting motivation for further work.

REFERENCES


