Attentional Shifting and Curiosity: a Reinforcement Learning Approach

Dario di Nocera*, Alberto Finzi†, Silvia Rossi‡ and Mariacarla Staffa‡§

* Dipartimento di Matematica, Università degli Studi di Napoli “Federico II”, via Cintia 21, 80125 Napoli, Italy
† Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione (DIETI), Università degli Studi di Napoli “Federico II”, via Claudio 21, 80125 Napoli, Italy
Email: {dario.dinocera, alberto.finzi, silvia.rossi, mariacarla.staffa}@unina.it
‡§ Authors are listed in strict alphabetical order.

Abstract—Attention allocation strategies represent key capabilities of human beings, which are strictly connected with action selection and execution mechanisms, while intrinsic motivations directly affect the allocation of attentional resources. In this paper we propose a model of Reinforcement Learning (RL), where both these capabilities are involved. RL is deployed to learn how to allocate attentional resources in a behavior-based robotic system, while action selection is obtained as a side effect of the resulting motivated attentional behaviors. Moreover, the influence of intrinsic motivations in attention orientation is obtained by introducing internal rewards associated with curiosity drives. In this way, the learning process is affected not only by goal-specific rewards, but also by intrinsic motivations depending on the internal state of the system.

I. INTRODUCTION

T he concepts of attention and motivations are of great interest in adaptive robotic systems. These mechanisms can be exploited to guide, activate, and coordinate multiple concurrent behaviors linking their variability to the circumstances in which they are activated. Beyond their role in perception orientating and filtering, attentional mechanisms are considered as key capabilities of human beings, which are strictly connected with action selection and execution [Norman and Shallice, 1986]. On the other hand, intrinsic motivations directly affect the modulation and the control of attentional resources, and affect action selection process. For example, curiosity is considered the main drive for human beings to explore novel situations and to learn complex behaviors from experience [Berlyne, 1954], [Litman, 2005]. Moreover, recent studies have shown that both attention and curiosity are strictly related to the dopaminergic system responsible for action driving. It is widely accepted, indeed, that dopamine affects both the reward exciting, fundamental in the learning process, and the demand of more attention by novel stimuli [Nieoullon, 2002], [Jepma et al., 2012].

The Reinforcement Learning [Montague et al., 1996] represents the main technique adopted as a computational model of the dopamine-like reward system. Recent works incorporate models for novelty and curiosity, within Motivated RL algorithms [Baranes et al., 2013], [Singh et al., 2010], [Kaplan and Oudeyer, 2003], to allow behavior adaptation and action selection in response to the changing experiences of a robot. Typically, within these approaches, RL is used to directly model and optimize action selection strategies. Differently from these approaches, starting from a previous work [Di Nocera et al., 2012], we propose a model of action selection, which is indirectly provided by the learning of attentional allocation strategies by means of intrinsically motivated RL, where the states exploration policy is modulated by the curiosity. We refer to the model of attentional mechanisms proposed by [Burattini et al., 2010], while for the curiosity model we take inspiration from the model considered by [Litman, 2005]. As for the Motivated RL we consider an additional internal rewarding system, whose purpose is to drive the agent to progress in learning [Berlyne, 1954]. In the following section we give a brief introduction on models that underlie the mechanisms of attention and curiosity adopted in this work. Whereupon, we present our Motivated RL model, where the learning of the attentional strategies is driven by curiosity. Finally, we detail our approach by describing a case study of a simulated survival domain. Our main aim is to investigate the impact of curiosity on attentional shifting and, consequently, on action selection.

II. BACKGROUND

A. Attentional Shifting System

In this work, we refer to the attentional allocation framework introduced in [Burattini et al., 2010]. In contrast with typical work on visual attention [Itti and Koch, 2001], Burattini et al. approach is not concerned with the orientation of the attention in the space (i.e. the field of view), instead it is about executive attention [Posner et al., 1980] and the temporal distribution of attentional resources needed to monitor and control multiple processes. This model of attention is inspired by [Pashler and Johnston, 1998], where the attentional load due to the accomplishment of a particular task is defined as the quantity of attentional time units devoted to that particular task, and by [Senders, 1964], where attentional allocation mechanisms are related to the sampling rate needed to monitor multiple parallel processes. Burattini et al. [Burattini et al., 2010] propose, in fact, a frequency-based model of attention allocation for regulating the sensors sampling rates and behaviors activations. Such an attentional allocation mechanism is able to increase/decrease the arousal level of each behavior with respect to salient internal/external stimuli, by changing
In this paper, we exploit a model of curiosity that is inspired by the Litman’s combination of wanting and liking. In our approach, the interpretation of these two are different and related to our behavior-based architecture (see Section III-c).

III. MOTIVATED RL FOR ATTENTIONAL SHIFTING

Following the approach presented in [Di Nocera et al., 2012], we design a new method for learning the attentional shifting strategies by exploiting a RL algorithm [Sutton and Barto, 1998], where also intrinsic motivations are considered. Our aim is to understand how intrinsic motivations, such as curiosity, could affect the learning process. In particular, a Q-learning with a softmax (Boltzman) exploratory policy is used to tune and adapt the sensors sampling frequencies, while action selection is obtained as a side effect.

a) The Action Space: A^b is the set of possible periods of activation $P = \{p_1, \ldots, p_n\}$, which can be assigned to the behavior b. Thus, an action a^b is an assignment of the clock period p_i^b for each behavior b in every state, determining the behavior activation frequency. The idea is that the system does not directly learn the action to be executed, but it learns

The schema theory representation of an attentional behavior is illustrated in Figure 1. This is characterized by a Perceptual Schema (PS), which elaborates sensor data, a Motor Schema (MS), producing the pattern of motor actions, and an attentive control mechanism, called Adaptive Innate Releasing Mechanism (AIRM), based on a combination of a clock and a releaser. The releasing mechanism works as a trigger for the MS activation (e.g., the view of a predator releases the escape behavior), while the clock regulates sensors sampling rate and, consequently, the rate of possible behaviors activations. The period p_i^b of each clock ranges in an interval $[p_{\text{min}}^b, p_{\text{max}}^b]$ specific for each behavior b. The clock enables the data flow σ_i^b from sensors to MS by means of a trigger function $\rho(t, p_i^b) \in (0, 1)$ every p_i^b time units. A monitoring function $f(\sigma_i^b, p_i^{t-1}) : \mathbb{R}^n \rightarrow \mathbb{N}$ adjusts the current clock period p_i^b, according to both internal states and environmental changes.

In Section III we will detail our approach, showing how we can learn the attentive monitoring function by means of a RL technique, taking also into account the influence of the curiosity intrinsic motivation.

B. Intrinsic Motivations: Curiosity

Curiosity is an appetitive state involving the recognition, pursuit, and intense desire to investigate novel information and experiences that demand ones attention. In literature, we find two main theoretical accounts of curiosity: the optimal arousal [Litman and Jimerson, 2004] and curiosity-drive [Berlyne, 1950]. The curiosity-drive model assumes that the main drive of curiosity is the reduction of uncertainty: novel and ambiguous stimuli cause a need for a coherence restore that reduces the uncertainty. This reduction is considered as rewarding. This model is supported by studies showing that unusual situations are associated with approaching behaviors and attentional states (e.g., see the Loewenstein’s knowledge gap/approach gradient [Loewenstein, 1994]). However, the curiosity-drive model cannot explain why biological organisms initiate exploratory behaviors without any stimuli. These situations are instead well explained by the optimal-arousal model (e.g., see the Spielberger and Starr model [Spielberger and Starr, 1994]). Following this model, the biological systems are associated with an homeostatic regulation of their arousal level: when the arousal level is understimulated, the organism is motivated to increase the arousal and look for novel situations; in contrast, when the organisms is overstimulated additional stimuli are evaluated as negative and associated with an avoidance behavior. While in the curiosity-drive model the reward is associated with uncertainty reduction, in the optimal arousal model, the induction of curiosity is directly rewarding. Also this model is not completely satisfactory, because the gain of new knowledge could reduce the feeling of interest. This could be considered counter-productive if we assume that the arousal state should be maintained (see [Litman, 2005]).

A combination of these two approaches is proposed by [Litman, 2005] with interest/deprivation model of curiosity. Here, both the satiation and the activation of curiosity can be rewarding: the interest-based curiosity is driven by novel stimuli and opportunity of learning, whereas deprivation-based curiosity is driven by the uncertainty and lack of knowledge. The interest/deprivation model of curiosity is related to the neuroscience of the wanting and liking systems [Berridge, 2003], which are hypothesized to underlie motivation and affective experience for a broad class of appetites. In this case, wanting is associated with deprivation and need of knowledge, while liking is associated with the expected pleasure due to learning and knowledge acquisition.

In Table I we show the Litman classification [Litman, 2005].

In this paper, we will detail our approach, showing how we can learn the attentive monitoring function by means of a RL technique, taking also into account the influence of the curiosity intrinsic motivation.
attentional policies for adapting the activation frequencies of each behavior, providing an action selection that indirectly emerges from a particular configuration of the behaviors attentional values. Furthermore, different attentional shifting strategies will be learned depending on the level of curiosity of the agent.

b) The State Space: \(SS^b \) is defined as follows. The state \(s^b \) is determined by a triple \((c^b, p^b, \sigma^b) \), where \(c^b \) represents the level of curiosity of the behavior, \(p^b \) is for the current clock period, and \(\sigma^b \) is the current perceptive state of a behavior \(b \). In particular the behaviors attentional monitoring periods \(p^b \) range in a predefined set of four possible values \([p^b_1, p^b_2, p^b_3, p^b_4] \) for each behavior. The perceptive state \(\sigma^b \) is considered to be a partitioning of the total perceptive domain in equidimensional intervals (i.e., each perceptive state is a sub-range of the input signal). Finally, \(c^b \) ranges in \([LL, LH, HL, HH]\) meta-spaces defining the relation between wanting and liking values inspired by the curiosity model definition of Litman [Litman, 2005] (see section II-B). Therefore, the attentional allocation policy \(\pi^b: SS^b \rightarrow AS^b \) represents a mapping between the current state \(s^b \) and the next value for the attentional period \(p^b \), and should be learned by means of the QL algorithm.

c) Extrinsic and Intrinsic Rewards: Once defined the Action and State spaces, we define the reward as follows:

\[
R^b = (1 - w) * R^e_b + (w) * R^i_b
\]

where \(R^e_b \) is the extrinsic reward computed considering the observed state, and \(R^i_b \) represents the intrinsic reward evaluated considering the satisfaction of an observation with respect to a particular curiosity state. The value of \(R^e_b \) is thus computed as level of liking. The \(w \) value represents the level of wanting, an internal unmotivated desire to explore something (nothing particular or something specific depending on liking level). Our assumption is that the level of wanting depends on a sort of (global) energy state of the agent (see section IV). The idea is that the robotic agent can explore new situations, guided by curiosity, only when the system is in a wellness state, while, when the system is under a certain wellness threshold, attentional shifting strategies maintain attention focused on priority behaviors (e.g., EAT and DRINK) rather than on secondary ones (unaware exploration of new states).

<table>
<thead>
<tr>
<th>Liking</th>
<th>Wanting</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>(R^e_b >> R^i_b)</td>
<td>(R^e_b < R^i_b)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>(R^e_b > R^i_b)</td>
<td>(R^e_b << R^i_b)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II
WANTING AND LIKING RELATIONS AND THE ASSOCIATED RELATIONS BETWEEN INTRINSIC AND EXTRINSIC REWARDS.

These mechanisms will imply that, when the situation is critical the \(R^e_b \) intrinsic reward value will be neglected with respect to the \(R^e_b \) extrinsic reward value, while \(R^i_b \) will gain more influence in determining the reward value as much as the agent will be in a wellness state. Relations between \(R^e_b, R^i_b \) and wanting, liking values are synthesized in Table II.

IV. Case Study

To test our approach we introduce the following Survival Domain. The robot must survive for a predefined amount of time within an environment avoiding obstacles and recharging energy by eating and drinking. We consider simulated environments of 16m². Obstacles, water, and food locations are cubes of size 0.5m × 0.5m × 0.5m, respectively of black, blue, and green color (see Figure 7-left). An experiment ends in a positive way if the robot is able to survive till the end of the test \(\text{max_time} \), while it fails in three cases: the robot collides with an obstacle or dies of hunger or thirst. We test our approach using a simulated Pioneer3-DX mobile robot endowed with a blob camera and 16 sonar sensors (using the Player/Stage tool http://playerstage.sourceforge.net/).

A. Internal Needs Functions

We assume that the robot is endowed with internal drives. In our case study, we consider three internal needs: hunger, thirst, and sensation of safety. The Hunger function is to compute the need for food:

\[
\text{Hunger}(t) = \text{Hunger}(t-1) + k \times (nb_act) - (e_f \times \text{food_consumed}).
\]

Here, the hunger increases the need for food at each machine cycle by a \(k \) value for each active behavior \((nb_act) \), and decreases it when a quantity of food is ingested \(\text{(food_consumed)} \), depending on the energy power of the food \((e_f) \). An analogous Thirst function is used to compute the need for water:

\[
\text{Thirst}(t) = \text{Thirst}(t-1) + k \times (nb_act) - (e_w \times \text{water_consumed}).
\]

Finally, a Safety function computes the need of safety and depends on the current degree of danger:

\[
\text{Safety}(t) = \min(\sigma^a) \times \frac{p^a_{max} - p^a}{p^a_{max} - p^a_{min}},
\]

where the level of safety is calculated with respect to the minimum distance between the robot current position and an obstacle \((\sigma^a) \). When the distance decreases and the AVOID activation period \((p^a) \) is relaxed the safety decreases; vice versa, the safety increases when the activation period of the avoid is suitably balanced with respect to the distance from an obstacle.

B. Attentional Behaviour-Based Architecture

We consider three behaviors to model the robotic system: AVOID, EAT and DRINK (see Figure 2). The domain for AVOID spans in the interval \([0, \sigma^a_{max}]\); the domain of DRINK is \([0, \sigma^d_{max}]\), where \(\sigma^a_{max} \) represents the maximum value for the thirst function; the EAT domain is in \([0, \sigma^e_{max}]\), where \(\sigma^e_{max} \) is the maximum state of hunger the robotic system can assume. The perceptive state of each behavior is obtained as a discretization of the perceptive domain using 4 equidimensional intervals \([\sigma^b_1, \sigma^b_2, \sigma^b_3, \sigma^b_4] \) used for indexing the learning state space by means of the triple \((c^b, \sigma^b, p^b) \). In the case
study, assuming the minimum clock period as 1 machine cycle, the possible period set for the AVOID, EAT and DRINK is: $p^a, p^f, p^d = \{1, 4, 8, 12\}$.

d) Extrinsic Rewarding function: We assume the reward always positive except for a strong penalty if the system is not able to survive. For the other cases the reward is computed, for each behavior, considering two additive components. The first evaluates the impact of frequent activation of a specific behavior. The higher the frequency, the smaller is the obtained reward. This component is equal to zero if $p^b_t = p^b_{\text{min}}$. The second component is related to the specific behavior. In particular, concerning AVOID, each activation is rewarded directly proportional to the distance from the obstacle.

$$R^c_e(t) = \begin{cases} \frac{1}{2} \left[\frac{p^n_t - p^n_{\text{min}}}{p^n_{\text{max}} - p^n_{\text{min}}} + \left(\frac{\sigma^n_f - \sigma^n_{\text{min}}}{\sigma^n_{\text{max}} - \sigma^n_{\text{min}}} \right) \right], & \text{if } \text{!crash} \\
\text{penalty}, & \text{otherwise} \end{cases}$$

As for EAT behavior, for each activation, the reward is inversely proportional to the current hunger value. A system that is hungry takes a smaller reward.

$$R^c_e(t) = \begin{cases} \frac{1}{2} \left[\frac{p^n_f - p^n_{\text{min}}}{p^n_{\text{max}} - p^n_{\text{min}}} + \left(1 - \frac{\sigma^n_f}{\sigma^n_{\text{max}}} \right) \right], & \text{if } \text{!crash} \\
\text{penalty}, & \text{otherwise} \end{cases}$$

Finally, each activation of DRINK is rewarded in a way that is inversely proportional to the current value of thirst:

$$R^c_d(t) = \begin{cases} \frac{1}{2} \left[\frac{p^n_d - p^n_{\text{min}}}{p^n_{\text{max}} - p^n_{\text{min}}} + \left(1 - \frac{\sigma^n_d}{\sigma^n_{\text{max}}} \right) \right], & \text{if } \text{!crash} \\
\text{penalty}, & \text{otherwise} \end{cases}$$

For our experiments we adopt the following settings:

- **penalty;** max cycles maximum penalty (-1500 units of penalties, where 1500 is the medium number of cycles for episode);
- **max time;** maximum time allowed to accomplish the task (180 seconds);
- σ^n_{max}: maximum sonar range (1 meter);
- σ^n_{min}: safety minimum distance (0.4 meters);
- σ^n_{max}: maximum value for σ^n_f (1500 units of charge);
- σ^n_{min}: minimum value for σ^n_f over which the robot needs to Eat (300 units of charge);
- σ^n_{max}: maximum value for σ^n_d (1500 units of charge);
- σ^n_{min}: minimum value over which the robot needs to drink (300 units of charge).

We choose as learning rate $\alpha = 0.8$, while for what concerns the SS, we refer to the tests implemented in [Di Nocera et al., 2012] considering a 24 states setting, since it has been shown this represents the best regulation in this kind of environment.

C. Motivated Attentional Framework

Intrinsic rewards are modeled by Curiosity, which, according to the description of above, we divide into two emotional components dealing respectively with the feeling of wanting and liking. We link the first one to the concept of residual energy for the robot body, while the second one to the level of novelty in the exploration of the learning states.

We consider a global value $E(t)$ called Energy, that takes into account all the variables regulated by the three needs functions defined above.

$$E(t) = E(t-1) - e_u - e_{nb} * (nb_{\text{act}}) + e_f * (food_{\text{consumed}}) + e_w * (water_{\text{consumed}})$$

where the current value of the energy $E(t)$ is computed starting from the previous level of energy $E(t-1)$, decreased of one unit of energy e_u supposed to be the energy consumed at each machine cycle. Then, we also consider the energy spent to activate each behavior e_{nb}, where nb_{act} is the number of currently active behaviors. On the other hand, we assume increments of the energy in correspondence of consummatory behaviors, such as EAT or DRINK, where the quantity e_f of energy, related to a particular food/water object, is assumed when these are consumed (i.e. if boolean conditions related to food_{consumed} and water_{consumed} are true).

For our experiments we adopt the following settings:

- **penalty;** max cycles maximum penalty (-1500 units of penalties, where 1500 is the medium number of cycles for episode);
- **max time;** maximum time allowed to accomplish the task (180 seconds);
- σ^n_{max}: maximum sonar range (1 meter);
- σ^n_{min}: safety minimum distance (0.4 meters);
- σ^n_{max}: maximum value for σ^n_f (1500 units of charge);
- σ^n_{min}: minimum value for σ^n_f over which the robot needs to Eat (300 units of charge);
- σ^n_{max}: maximum value for σ^n_d (1500 units of charge);
- σ^n_{min}: minimum value over which the robot needs to drink (300 units of charge).

We model the wanting component of the Curiosity as the residue of the Energy value (3).

$$w = E_e = E(t) - E_{\text{well}}$$
That is to say that the robot can show a curious behavior only when the situation is not critical (i.e., only when the global energy exceeds the E_{well} threshold, indicating a sort of wellness state of the system). E_{well} is supposed to be associated to a state of the system where the regulation of the periods of activation of the different behaviors is well balanced and leads to a suitable scheduling of the actions. We can interpret this residue value E_c as the energy that the system can spent not giving attention to prior behaviors, but just going around searching to reduce its curiosity or to move towards liking things. The second component of the curiosity is the liking, which we model as quantity related to new situations and represents the internal reward. In particular, since the curiosity in our system is interpreted as the exploration within the learning states space, we can assume that the novelty of a space is computed as follows:

$$l = R^b = 1 - \frac{NV(s^b)}{NV_{tot}}$$

where, NV is for number of visits and NV_{tot} represents the number of times the percept s^b has been observed during the previous NV_{tot} observations. We, thus, maintain a sort of temporal window of value NV_{tot}. In this way, on the one hand, we have an idea of how new is the observation; on the other hand, considering a finite temporal window, we simulate a sort of lapsing mechanism of the novelty of the states observations. The model of the temporal window can be compared to the Itti’s model of surprise [Baldi and Itti], by interpreting the temporal window as the approximation of a statistic on the percept. That is to say that if the system is not observing a percept for NV_{tot} times, the stimulus becomes likable again. While, if the system observes that particular perceptual state s^b many times (i.e. NV_{tot}), the stimulus associated becomes boring. The Curiosity modeled as above (depending on both liking and indirectly from global Energy value of the system) will affect the learning progress by providing an internal reward (details will be provided in next paragraphs) based on the wanting and linking combination.

V. EXPERIMENTAL RESULTS

In order to observe how the curiosity affects the learning process we first compare the convergence, in terms of survival time percentage, of the learning process of a robotic system endowed with intrinsic motivation ($CR = CuriousRobot$) with one that does not ($NCR = Not\sim CuriousRobot$). The plot in Figure 4 shows that during the first 220 episodes the NCR system is more able to survive in the environment, in fact, the survival time percentage starts from a value of 92%. This could be due to the fact that the curiosity, initially, leads the system to prefer the exploration of novel spaces rather than goal-directed ones. After a while the CR system starts to rapidly increase its survival time until it over pass the NCR system and reach the convergence (100% of the survival time) at the episode 278, w.r.t. the NCR system that does not reach the convergence before the episode 382.

![Figure 4](image_url)

Figure 4. Survival time percentage (averages each 100 episodes). Comparison between CR and NCR systems.

Figure 5 shows the cumulative rewards for each behavior during the learning process. As expected, during the first episodes, the CR fails in the sense that it is not able to learn suitable attentional strategies for regulating the behaviors activation. The cumulative rewards related with the CR AVOID behavior are worst w.r.t the NCR one until the episode 200, then they start to increase and to converge from the episode 300. Instead, the NCR shows a trend that seems not satisfactory concerning the cumulative rewards for the EAT and DRINK behaviors. This could be due to the fact that the robot is not guided by curiosity to immediately explore the spaces of the environment where there are food or water. It just learns to eat or drink when the associated needs functions exceed certain thresholds. Despite at the end of the experiments NCR EAT and DRINK rewards converge to better values, the global cumulative rewards show a faster convergence for the CR (see Figure 5). Moreover, if we look at the trend of the needs functions (see Figure 6), we observe a stable rhythmic path for each function for the CR. We
interpret the plots, in the case of the CR, as an effective learned attentional shifting policy of the behaviors EAT and DRINK. The robot seems to find a rhythmic alternation in its needs for eating and drinking (the decreasing part of the two functions corresponds to the consuming of food/water), while the NCR just waits to become very hungry/thirsty for searching sources of food/water. Finally, an unexpected result is that the motivated RL has lead the learning process not only at exploring new internal learning states, but it has also affected the spatial exploration of the environment. In Figure 7 we observe that the CR is more explorative (the cumulative traces of 500 episodes covered the 50% of the total area) with respect to the NCR (44% of the total area covered).

VI. CONCLUSIONS
In this work we proposed an intrinsically motivated RL, where the states exploration policy is modulated by the curiosity, while rewards are evaluated not only considering external cues, but also some internal motivations. The collected results show that the approach is feasible and effective and this learning process achieves very good results in orchestrating behaviors. That is, the curiosity-driven RL, applied to attentional shifting, allows to improve behaviors coordination and action selection. It provides the robot with an increased adaptation skill, permitting the robot to survive in the environment. The system learns how to dynamically and suitably adapt the behaviors activation rates in order to balance the regulation of the needs functions and of the global energy of the system.

ACKNOWLEDGMENT
Work supported by the European Community, within the FP7 ICT-287513 SAPHARI project.

REFERENCES